Tag Archives: Hepatic

Hepatic but Not Extrahepatic Insulin Clearance Is Lower in African American Than in European American Women

African Americans (AAs) tend to have higher plasma insulin concentrations than European Americans (EAs); the increased insulin concentrations have been attributed to increased secretion and/or decreased insulin clearance by liver or other tissues. This work characterizes the contributions of hepatic versus extrahepatic insulin degradation related to ethnic differences between AAs and EAs. By using a recently developed mathematical model that uses insulin and C-peptide measurements from the insulin-modified, frequently sampled intravenous glucose tolerance test (FSIGT), we estimated hepatic versus extrahepatic insulin clearance in 29 EA and 18 AA healthy women. During the first 20 min of the FSIGT, plasma insulin was approximately twice as high in AAs as in EAs. In contrast, insulin was similar in AAs and EAs after the 20–25 min intravenous insulin infusion. Hepatic insulin first-pass extraction was two-thirds lower in AAs versus EAs in the overnight-fasted state. In contrast, extrahepatic insulin clearance was not lower in AAs than in EAs. The difference in insulin degradation between AAs and EAs can be attributed totally to liver clearance. The mechanism underlying reduced insulin degradation in AAs remains to be clarified, as does the relative importance of reduced liver clearance to increased risk for type 2 diabetes.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

NFE2 Induces miR-423-5p to Promote Gluconeogenesis and Hyperglycemia by Repressing the Hepatic FAM3A-ATP-Akt Pathway

Hepatic FAM3A expression is repressed under obese conditions, but the underlying mechanism remains unknown. This study determined the role and mechanism of miR-423-5p in hepatic glucose and lipid metabolism by repressing FAM3A expression. miR-423-5p expression was increased in the livers of obese diabetic mice and in patients with nonalcoholic fatty liver disease (NAFLD) with decreased FAM3A expression. miR-423-5p directly targeted FAM3A mRNA to repress its expression and the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic miR-423-5p inhibition suppressed gluconeogenesis and improved insulin resistance, hyperglycemia, and fatty liver in obese diabetic mice. In contrast, hepatic miR-423-5p overexpression promoted gluconeogenesis and hyperglycemia and increased lipid deposition in normal mice. miR-423-5p inhibition activated the FAM3A-ATP-Akt pathway and repressed gluconeogenic and lipogenic gene expression in diabetic mouse livers. The miR-423 precursor gene was further shown to be a target gene of NFE2, which induced miR-423-5p expression to repress the FAM3A-ATP-Akt pathway in cultured hepatocytes. Hepatic NFE2 overexpression upregulated miR-423-5p to repress the FAM3A-ATP-Akt pathway, promoting gluconeogenesis and lipid deposition and causing hyperglycemia in normal mice. In conclusion, under the obese condition, activation of the hepatic NFE2/miR-423-5p axis plays important roles in the progression of type 2 diabetes and NAFLD by repressing the FAM3A-ATP-Akt signaling pathway.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

Priming Effect of a Morning Meal on Hepatic Glucose Disposition Later in the Day

We used hepatic balance and tracer ([3H]glucose) techniques to examine the impact of “breakfast” on hepatic glucose metabolism later in the same day. From 0–240 min, 2 groups of conscious dogs (n = 9 dogs/group) received a duodenal infusion of glucose (GLC) or saline (SAL), then were fasted from 240–360 min. Three dogs from each group were euthanized and tissue collected at 360 min. From 360–600 min, the remaining dogs underwent a hyperinsulinemic (4x basal) hyperglycemic clamp (arterial blood glucose 146 ± 2 mg/dL) with portal GLC infusion. The total GLC infusion rate was 14% greater in dogs infused with GLC than in those receiving SAL (AUC360–600min 2,979 ± 296 vs. 2,597 ± 277 mg/kg, respectively). The rates of hepatic glucose uptake (5.8 ± 0.8 vs. 3.2 ± 0.3 mg ⋅ kg–1 ⋅ min–1) and glycogen storage (4.7 ± 0.6 vs. 2.9 ± 0.3 mg ⋅ kg–1 ⋅ min–1) during the clamp were markedly greater in dogs receiving GLC compared with those receiving SAL. Hepatic glycogen content was ~50% greater, glycogen synthase activity was ~50% greater, glycogen phosphorylase activity was ~50% lower, and the amount of phosphorylated glycogen synthase was 34% lower, indicating activation of the enzyme, in dogs receiving GLC compared with those receiving SAL. Thus, morning GLC primed the liver to extract and store more glucose in the presence of hyperinsulinemic hyperglycemia later in the same day, indicating that breakfast enhances the liver’s role in glucose disposal in subsequent same-day meals.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice

Gastric inhibitory polypeptide receptor (GIPR) directly induces energy accumulation in adipose tissue in vitro. However, the importance of the direct effect of GIPR signaling on adipose tissue in vivo remains unclear. In the current study, we generated adipose tissue–specific GIPR knockout (GIPRadipo–/–) mice and investigated the direct actions of GIP in adipose tissue. Under high-fat diet (HFD)-fed conditions, GIPRadipo–/– mice had significantly lower body weight and lean body mass compared with those in floxed GIPR (GIPRfl/fl) mice, although the fat volume was not significantly different between the two groups. Interestingly, insulin resistance, liver weight, and hepatic steatosis were reduced in HFD-fed GIPRadipo–/– mice. Plasma levels of interleukin-6 (IL-6), a proinflammatory cytokine that induces insulin resistance, were reduced in HFD-fed GIPRadipo–/– mice compared with those in HFD-fed GIPRfl/fl mice. Suppressor of cytokine signaling 3 (SOCS3) signaling is located downstream of the IL-6 receptor and is associated with insulin resistance and hepatic steatosis. Expression levels of SOCS3 mRNA were significantly lower in adipose and liver tissues of HFD-fed GIPRadipo–/– mice compared with those of HFD-fed GIPRfl/fl mice. Thus, GIPR signaling in adipose tissue plays a critical role in HFD-induced insulin resistance and hepatic steatosis in vivo, which may involve IL-6 signaling.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

FGF21 Mediates the Thermogenic and Insulin-Sensitizing Effects of Dietary Methionine Restriction but Not Its Effects on Hepatic Lipid Metabolism

Dietary methionine restriction (MR) produces a rapid and persistent remodeling of white adipose tissue (WAT), an increase in energy expenditure (EE), and enhancement of insulin sensitivity. Recent work established that hepatic expression of FGF21 is robustly increased by MR. Fgf21–/– mice were used to test whether FGF21 is an essential mediator of the physiological effects of dietary MR. The MR-induced increase in energy intake and EE and activation of thermogenesis in WAT and brown adipose tissue were lost in Fgf21–/– mice. However, dietary MR produced a comparable reduction in body weight and adiposity in both genotypes because of a negative effect of MR on energy intake in Fgf21–/– mice. Despite the similar loss in weight, dietary MR produced a more significant increase in in vivo insulin sensitivity in wild-type than in Fgf21–/– mice, particularly in heart and inguinal WAT. In contrast, the ability of MR to regulate lipogenic and integrated stress response genes in liver was not compromised in Fgf21–/– mice. Collectively, these findings illustrate that FGF21 is a critical mediator of the effects of dietary MR on EE, remodeling of WAT, and increased insulin sensitivity but not of its effects on hepatic gene expression.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

Effects of 13-Hour Hyperglucagonemia on Energy Expenditure and Hepatic Glucose Production in Humans

Glucagon (GCG) acutely stimulates energy expenditure (EE) and hepatic glucose production (HGP) in humans, but whether these effects persist during hyperglucagonemia of longer duration is unclear. Using a prospective, randomized, single-blind, crossover study design, we therefore measured EE and rates of glucose appearance (glucose RA) during three separate infusion protocols in healthy lean males: A) 10-h overnight GCG infusion (6 ng/[kg x min]) followed by 3-h infusion of GCG, octreotide (OCT), and insulin (INS) for basal replacement; B) overnight saline (SAL) infusion followed by GCG/OCT/INS infusion; and C) overnight SAL infusion followed by SAL/OCT/INS infusion. Sleep EE, measured at 6 to 7 h of the overnight infusion, was increased 65–70 kcal/24 h in A compared with B and C. During the 3-h infusion, mean resting EE remained significantly increased in A versus C by ~50 kcal/24 h; in B, resting EE increased with a statistical trend but was not significantly greater than in C. Glucose RA increased to comparable levels in A and B. We conclude that in healthy lean males, stimulation of EE and HGP is sustained during hyperglucagonemia of longer duration when insulin secretion is inhibited. The increase in EE at the present GCG dose was of marginal clinical significance.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

Hepatic DPP4 DNA Methylation Associates With Fatty Liver

Hepatic DPP4 expression is elevated in subjects with ectopic fat accumulation in the liver. However, whether increased dipeptidyl peptidase 4 (DPP4) is involved in the pathogenesis or is rather a consequence of metabolic disease is not known. We therefore studied the transcriptional regulation of hepatic Dpp4 in young mice prone to diet-induced obesity. Already at 6 weeks of age, expression of hepatic Dpp4 was increased in mice with high weight gain, independent of liver fat content. In the same animals, methylation of four intronic CpG sites was decreased, amplifying glucose-induced transcription of hepatic Dpp4. In older mice, hepatic triglyceride content was increased only in animals with elevated Dpp4 expression. Expression and release of DPP4 were markedly higher in the liver compared with adipose depots. Analysis of human liver biopsy specimens revealed a correlation of DPP4 expression and DNA methylation to stages of hepatosteatosis and nonalcoholic steatohepatitis. In summary, our results indicate a crucial role of the liver in participation to systemic DPP4 levels. Furthermore, the data show that glucose-induced expression of Dpp4 in the liver is facilitated by demethylation of the Dpp4 gene early in life. This might contribute to early deteriorations in hepatic function, which in turn result in metabolic disease such as hepatosteatosis later in life.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

Growth Hormone Control of Hepatic Lipid Metabolism

In humans, low levels of growth hormone (GH) and its mediator, IGF-1, associate with hepatic lipid accumulation. In mice, congenital liver-specific ablation of the GH receptor (GHR) results in reductions in circulating IGF-1 and hepatic steatosis, associated with systemic insulin resistance. Due to the intricate relationship between GH and IGF-1, the relative contribution of each hormone to the development of hepatic steatosis is unclear. Our goal was to dissect the mechanisms by which hepatic GH resistance leads to steatosis and overall insulin resistance, independent of IGF-1. We have generated a combined mouse model with liver-specific ablation of GHR in which we restored liver IGF-1 expression via the hepatic IGF-1 transgene. We found that liver GHR ablation leads to increases in lipid uptake, de novo lipogenesis, hyperinsulinemia, and hyperglycemia accompanied with severe insulin resistance and increased body adiposity and serum lipids. Restoration of IGF-1 improved overall insulin sensitivity and lipid profile in serum and reduced body adiposity, but was insufficient to protect against steatosis-induced hepatic inflammation or oxidative stress. We conclude that the impaired metabolism in states of GH resistance results from direct actions of GH on lipid uptake and de novo lipogenesis, whereas its actions on extrahepatic tissues are mediated by IGF-1.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

Ubiquitin Ligase COP1 Controls Hepatic Fat Metabolism by Targeting ATGL for Degradation

Optimal control of hepatic lipid metabolism is critical for organismal metabolic fitness. In liver, adipose triglyceride lipase (ATGL) serves as a major triacylglycerol (TAG) lipase and controls the bulk of intracellular lipid turnover. However, regulation of ATGL expression and its functional implications in hepatic lipid metabolism, particularly in the context of fatty liver disease, is unclear. We show that E3 ubiquitin ligase COP1 (also known as RFWD2) binds to the consensus VP motif of ATGL and targets it for proteasomal degradation by K-48 linked polyubiquitination, predominantly at the lysine 100 residue. COP1 thus serves as a critical regulator of hepatocyte TAG content, fatty acid mobilization, and oxidation. Moreover, COP1-mediated regulation of hepatic lipid metabolism requires optimum ATGL expression for its metabolic outcome. In vivo, adenovirus-mediated depletion of COP1 ameliorates high-fat diet–induced steatosis in mouse liver and improves liver function. Our study thus provides new insights into the regulation of hepatic lipid metabolism by the ubiquitin-proteasome system and suggests COP1 as a potential therapeutic target for nonalcoholic fatty liver disease.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

Assessment of Metformin-Induced Changes in Cardiac and Hepatic Redox State Using Hyperpolarized[1-13C]Pyruvate

Metformin improves cardiovascular outcomes in type 2 diabetes, but its exact mechanisms of action remain controversial. We used hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopy to determine the effects of metformin treatment on heart and liver pyruvate metabolism in rats in vivo. Both oral treatment for 4 weeks and a single intravenous metformin infusion significantly increased the cardiac [1-13C]lactate:[1-13C]pyruvate ratio but had no effect on the [1-13C]bicarbonate + 13CO2:[1-13C]pyruvate ratio, an index of pyruvate dehydrogenase flux. These changes were paralleled by a significant increase in the heart and liver cytosolic redox state, estimated from the [lactate]:[pyruvate] ratio but not the whole-cell [NAD+]/[NADH] ratio. Hyperpolarized MRI localized the increase in cardiac lactate to the left ventricular myocardium, implying a direct myocardial effect, though metformin had no effect on systolic or diastolic cardiac function. These findings demonstrate the ability of hyperpolarized pyruvate magnetic resonance spectroscopy to detect metformin-induced changes in cytosolic redox biology, suggest that metformin has a previously unrecognized effect on cardiac redox state, and help to refine the design of impending hyperpolarized magnetic resonance studies in humans.

Diabetes Journal current issue





  • Twitter
  • del.icio.us
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon