Inhibition of miR-200c Restores Endothelial Function in Diabetic Mice Through Suppression of COX-2

Endothelial dysfunction plays a crucial role in the development of diabetic vasculopathy. Our initial quantitative PCR results showed an increased miR-200c expression in arteries from diabetic mice and patients with diabetes. However, whether miR-200c is involved in diabetic endothelial dysfunction is unknown. Overexpression of miR-200c impaired endothelium-dependent relaxations (EDRs) in nondiabetic mouse aortas, whereas suppression of miR-200c by anti–miR-200c enhanced EDRs in diabetic db/db mice. miR-200c suppressed ZEB1 expression, and ZEB1 overexpression ameliorated endothelial dysfunction induced by miR-200c or associated with diabetes. More importantly, overexpression of anti–miR-200c or ZEB1 in vivo attenuated miR-200c expression and improved EDRs in db/db mice. Mechanistic study with the use of COX-2–/– mice revealed that COX-2 mediated miR-200c–induced endothelial dysfunction and that miR-200c upregulated COX-2 expression in endothelial cells through suppression of ZEB1 and increased production of prostaglandin E2, which also reduced EDR. This study demonstrates for the first time to our knowledge that miR-200c is a new mediator of diabetic endothelial dysfunction and inhibition of miR-200c rescues EDRs in diabetic mice. These new findings suggest the potential usefulness of miR-200c as the target for drug intervention against diabetic vascular complications.

Diabetes Journal current issue

  • Twitter
  • Digg
  • Facebook
  • Technorati
  • Reddit
  • Yahoo Buzz
  • StumbleUpon

Leave a Reply

Your email address will not be published. Required fields are marked *